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ABSTRACT 

Three-dimensional (3D) visualisations including 3D printing, 

virtual reality (VR), augmented reality (AR) or mixed reality 

(MR) are increasingly used in the medical field with 

evidence proving their value in many applications, ranging 

from medical education to pre-operative planning and 

simulation of complex surgical procedures, enhancing 

communication between doctor-patients and with clinical 

colleagues
1-30

. 3D printed models derived from medical 

imaging datasets, mainly from computed tomography (CT) 

and magnetic resonance imaging (MRI) replicate anatomical 

structures and pathologies with high accuracy and 

reliability, thus serving as a very useful tool in medical 

education such as learning anatomy and pathology when 

compared to the traditional teaching methods using 

cadavers and specimens. 3D printed models also provide 

the user with tactile experience when holding the physical 

models in hand and this is extremely useful for clinicians to 

explain the diseased conditions to patients. Further, with 

models printed using soft and elastic materials, 3D printed 

models can be used as a training tool for young or 

inexperienced doctors or trainees to improve their practical 

skills on surgical procedures before they operative on 

patients
31-33

. 

VR/AR/MR represents another innovative 3D visualisation 

tool by providing immersive environment to demonstrate 

realistic 3D relationship between different structures. These 

visualisations are showing great promise in the medical 

domain with increasing reports in the literature
34-36

.  Studies 

have shown the usefulness of using these visualisations in 

medical education and clinical practice such as pre-

operative planning for outcome improvement
37

. A recent 

study comparing MR and 3D printing technologies with 

original CT imaging in the assessment of congenital heart 

disease (CHD) has further highlighted the clinical value of 

these novel visualisation tools
38

.  Lau et al compared these 

two modalities with the standard image visualisation in the 

diagnostic assessment of two types of CHD, atrial septal 

defect and double outlet right ventricle which represent 

simple and complex CHD conditions. Authors recruited 34 

clinicians to assess the value of these modalities in terms of 

education, preoperative planning and intraoperative 

guidance. Their results showed MR was ranked as the best 

modality for understanding complex CHD lesions by 

providing depth perception, displaying 3D spatial 

relationship between cardiac structures, serving as an 

educational tool for pathology and facilitating preoperative 

planning of CHD surgeries. 3D printed heart models were 

ranked as the best modality for enhancing communication 

with patients. This study emphasises the additional value of 

using both 3D printing and MR in improving clinical 

diagnosis and management of CHD. 

Artificial intelligence (AI), in particular machine learning 

(ML) and deep learning (DL) tools have shown huge 

potential in medical applications and clinical value of using 

ML and DL in medicine has been validated in many studies 

across a wide spectrum of areas, ranging from diagnosis to 

disease prediction and outcome improvement
39-47

. The main 

advantages of ML and DL algorithms lie in their rapid, 

efficient and reliable automated detection and analysis of 

large datasets with results comparable to human observers. 

Some examples of these applications include automated 

detection or quantification of disease such as coronary 

calcium or stenosis which represents one of the common 

applications in cardiovascular field. It is generally agreed 

that AI can serve as a complementary tool to increase 

workflow and clinical performance. 

In the March issue of AMJ, there are three student articles 

reporting their experience of using these modalities in 

medical applications
48-50

. The article by Williams et al 

reported the student experience of using open source 

software tools for image post-processing and segmentation 

of a sample MRI brain dataset. As detailed in the article, the 
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whole image processing process involves a combination of 

manual and semi- and automatic segmentation steps with 

cerebral lobes, cerebellum, brain stem and ventricle 

systems successfully segmented. These structures were 

printed with different colours and assembled together for 

excellent demonstration of 3D printed brain models. The 

models can be used for medical education and clinical 

practice which will be explored in further studies as 

highlighted in the article. 

The article by Delpech et al reported the clinical value of 

applying VR visualisation tool in pre-surgical planning of 

malignant hepatic tumours
49

. Researcher’s first chose two 

sample cases with one being hepatocellular carcinoma with 

multiple focal lesions in the liver while another one 

cholangiocarcinoma. Similar to what Williams et al 

described, they also used manual and semi-automatic 

approaches to process CT images of these cases. In addition 

to segmenting the tumours, they also segmented liver 

parenchyma, portal veins and hepatic veins, as well as 

dilated bile ducts (for the cholangiocarcinoma case only). VR 

views were successfully generated to demonstrate realistic 

relationship between tumours and surrounding hepatic 

structures. Initial experience shows potential value in pre-

operative planning when compared to the routine 2D/3D 

visualisations, although further research is needed to 

determine if the VR tool can enhance specialists (liver 

surgeons) in managing patients with improved clinical 

outcomes. 

The article by Silberstein and Sun presented the usefulness 

of using a recently developed AI for automated detection of 

osteoporotic vertebral fractures (OVFs) in elderly women 

who had chest x-ray examinations not referred for spinal 

disorders
50

.  The new AI tool, Ofeye 1.0 has been tested and 

validated at a multi-site study in China showing high 

diagnostic value in the detection of OVFs
51

. This student 

paper reported the initial experience of using the Ofeye 1.0 

in the analysis of chest radiographs from Caucasian 

populations which has not been reported in the literature. 

The AI tool is able to detect or highlight potential OVFs, 

even with mild degree such as less than 20% vertebral 

height loss on the lateral chest radiographs which are 

commonly missed on the radiological reports. Given its 

efficiency and accuracy, the AI tool can be used as a 

complementary method to routine diagnostic reports as 

chest x-ray is a very common imaging procedure, thus 

increasing workflow and clinical performance. 

In summary, these three student papers highlight the novel 

and innovative 3D visualisation and AI tools in medical 

applications. Although these early reports presented some 

preliminary findings, the results showcase the potential 

value of these modalities in improving both education and 

clinical practice. Given the ongoing research of these studies 

presented in these articles, we expect more robust findings 

to be available very soon. 
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