
Australasian Medical Journal [AMJ 2013, 6, 1, 7-14]

7

EDITORIAL

Please cite this paper as: White, J. Going native (or not): Five

questions to ask mobile application developers. AMJ 2013, 6,

1, 7-14. http://doi.org/10.21767/AMJ.2013.1576

Corresponding Author:
James White
Centre of Excellence for Science, Seafood
and Health, 9 Parker Place, WA 6102
james.a.white@postgrad.curtin.edu.au

Introduction

I recently needed a new shovel. At the hardware store I was,

as always, taken aback at the range of options available to me,

and the range of prices I could pay. Hardware store regulars

will know that this is true of everything from lawnmowers to

screwdrivers – one can pay an incredibly small price, an

incredibly large one, or anything in between. In case you are

wondering, I chose the second-cheapest shovel, a policy that

has served me fairly well over the years.

Shovels, lawnmowers and screwdrivers are easy. We know

what we are looking at. We can judge the look and feel, and

we know exactly what we will have when we get it home. We

may be familiar with the brand, and we will almost certainly

be familiar with the materials; we know, for instance, that

steel is harder and longer-lasting than plastic, but that it is

also heavier in the hand. We can read a list of features, seek

help for the items we do not understand, and make an

informed choice.

Most health professionals who have ever commissioned a

piece of software will know that it is a very different prospect.

The healthcare industry is increasingly aware of the

opportunities and benefits of information technology. This

means that people who have never given a great deal of

thought to the development of the software they use,

increasingly find themselves discussing large sums of money

with people who are wont to enthuse greatly about this or

that approach to development, using this or that technology,

in language that almost seems like English.

A colleague of mine recently sought quotes for a mobile

application, and received responses ranging from $30,000

to $150,000. What are we to do when faced with such

wildly divergent figures? How can we make a choice and

have confidence that we will get value for money, that

the project will be completed on time and to our

specifications, and that we will end up with a quality

product that matches our expectations, those of our

funders and, most importantly, those of the end users?

There are no easy answers to these questions. But as

someone with a foot in both camps – I am both a public

health researcher and a software developer – I have some

advice. Specifically, five questions you should ask the next

developer who is eager to tell you exactly how you should

spend your hard-won project funding. Naturally there are

a great many more than five questions that could, and

should be asked, but I consider that the majority of them

can be formulated and understood by most people, or at

least, most people who have ever commissioned

anything. You will want to know how experienced the

contractor is, and perhaps talk to their previous clients.

You will want to know that they have experience in

developing applications or “apps” with some

commonality with your project. You will ask questions

relating to timeframes, extra costs, guarantees,

intellectual property and so on. The questions I propose

here are related directly to the field of mobile app

development, and specifically to the underlying structures

with which apps are built – their DNA, if you like. To most

people “an app is an app”, and although they may be able

to judge the good from the bad, they may be less able to

pinpoint the characteristics that make it one or the other.

These questions may assist in doing so, and in helping to

insure that, when complete, your app falls into the former

category.

However I am going to make you, the reader, work a little

before giving you the questions. I will begin by describing

some essential characteristics of mobile applications, and

some important considerations. In digesting this, you will

more than likely formulate a list of questions for yourself;

Going native (or not): Five questions to ask mobile application developers

James White

Curtin Health Innovation Research Institute, Curtin University

http://doi.org/10.21767/AMJ.2013.1576
mailto:james.a.white@postgrad.curtin.edu.au

Australasian Medical Journal [AMJ 2013, 6, 1, 7-14]

8

you can test your own comprehension by comparing them to

mine, which I will provide at the end.

Mobile apps are not born equal

Like so many things, there are several ways you could

categorise apps. You could reasonably say that there are five

basic kinds of app, or three, or 20. I will say here that there

are two types, or rather two ends of a spectrum. At one end

are native applications and at the other are those variously

called web apps, browser apps, or non-native apps. Each has

pros and cons, and it is essential to know which your

developer is proposing.

Native apps are built with a specific family of devices in mind.

Presently, one could build a native app for iOS devices

(iPhone, iPad and iPod Touch), for Android devices (a plethora

of smartphone and tablet devices made by various

manufacturers, which run on an operating system developed

and maintained by Google), for Windows-compatible devices

(Microsoft’s latest Windows operating system is compatible

with some third-party smartphones and tablets, as well as

Microsoft’s own newly released Surface tablets), for

Blackberry, or for one of a few smaller players.

Each of these operating systems requires that native apps be

built using a particular coding language. For those taking

notes, it is Objective-C for iOS, Java for Android, and typically

C++ or C# for Windows. They also provide a set of protocols

for accessing the various interface objects, functions, utilities,

aerials and sensors of modern mobile devices. These

application programming interfaces (APIs) give developers

access to extensive frameworks and tools that are written by

the platform curators, specifically for that platform. The use of

these APIs for both visual elements and under the hood

functionality conveys the native “feel” of an app. In addition,

APIs enable developers to build apps which can directly access

device features such as cameras, GPS aerial, accelerometer

(the sensor that detects the orientation of the device),

microphones, and so on. Non-native apps may be able to

access some of these features, such as the camera or user

location, but they do so using non-optimal methods.

Native apps are distributed directly by the companies which

manage the operating systems, such as Apple, Google and

Microsoft, via applications stores on the device, or on desktop

computers. Upgrades and bug fixes are also managed in this

way – developers who wish to modify their app must do so via

a submission to the relevant application store, and wait

whatever time that store takes for approval. Some platforms

take a curative approach to distribution, requiring apps to be

checked for functionality, security and content before being

approved for distribution (Apple has been famously

stringent in this respect), while others take a more hands-

off approach.

At the other end of the spectrum are non-native web

apps, designed to work across many devices and

operating systems. They use common languages

accessible on all devices, including HyperText Markup

Language (HTML) and Javascript, languages used for

general web development. These apps are essentially

websites that have been optimised for smaller screens,

although optimisation is a challenge when the developer

is trying to support literally hundreds of different devices,

all with different screen sizes, resolutions, central

processing units (CPUs) and graphics processing units

(GPUs). Users receive a URL address, just as they would

for a standard website, and navigate to it using the

browser on their device. The operating system and device

manufacturers have no control over content or

functionality – developers may make changes at any time,

with immediate effect.

In the middle of the spectrum are so-called hybrid apps,

which take web-based functionality and wrap it in native

containers. This results in a set of native applications, one

for each targeted system, sharing web-driven content.

These are distributed via the appropriate application

stores and, while some core functionality may only be

altered via a new submission, other content may be

updated immediately. There are also emerging

technologies that enable developers to write an app using

a single language, then to translate that code into native

code for various devices. Perhaps the fairest thing that

can be said about this approach is that “results may vary”.

The tools are improving all the time, and there have been

some very good apps built using this approach. However,

there have also been many that were demonstrably

inferior.

It is very important to be clear about which of these

approaches a developer is proposing. It is particularly

important when dealing with this last category of hybrid

or cross-platform apps, as there is great potential for

confusion and misplaced expectation. A developer could

say that a hybrid app, built using large amounts of web-

served content, using a cross-platform complier, is native

– it uses some native APIs and is distributed via the

appropriate application stores. They could also make the

case that this is the best of both worlds, and in some

cases they may be right. However, if they are right, it is

because this approach is an effective solution to the

particular requirements of the app project under

Australasian Medical Journal [AMJ 2013, 6, 1, 7-14]

9

discussion. Not because it is the best solution per se. It is vital

to understand the advantages and compromises inherent in

each approach.

Advantages of native development

The core advantage of native applications is that they are built

according to a set of specifications provided by the operating

system manufacturer. These manufacturers provide vast

libraries of code which can be used by developers, and this

helps to ensure some level of consistency across apps.

Buttons, indicators, item choosers and navigation structures

may all work consistently from app to app, because they are

using the same code base, developed by the stewards of the

platform, and refined over time. By contrast, an interface

object in a web app may have been designed and coded by

anyone, and will vary greatly from app to app.

The consequences of this variability should not be

underestimated. It is remarkable to consider the extent that

mobile devices have penetrated our daily lives, in a relatively

short space of time. Many people use such devices very

regularly through the day, for all manner of tasks, and as a

consequence the interface of the device itself becomes very

familiar to users. This fact is truer for mobile devices than it

has ever been for desktop computers. In short, users expect

apps to behave in particular ways, and there is an immediate

disconnect when they do not. For example, many native

mobile apps use a standard navigation structure to move from

one screen to another. The device animates smoothly

between the views and, because the content is usually

embedded in the app, it appears almost instantaneously.

Furthermore, the device presents various standard controls

for navigating backwards and forwards through content –

users recognise these controls, and know what to expect

when tapping them.

Many web apps try to mimic this design and functionality, but

even the very best examples cannot achieve more than an

approximation. For one thing, because the content is loaded

from the web rather than from within the app, it will typically

take more time for new screens to load – sometimes

significantly more. The experience is much more like viewing a

web page, than using a mobile app. There is a school of

thought that developers have made a rod for their own back

by attempting to imitate native design; by trying but falling

short, they have effectively set up false expectations for the

user.

The means of loading content leads to another advantage of

native development – all things being equal, a native app will

consume far less data than a non-native, web-based

equivalent. That is not to say that native apps consume no

data – most modern apps, no matter how they are built,

will access the Internet for some purpose or another. The

critical difference is that, in a web app, everything seen on

screen has been downloaded on the fly. By contrast, a

native app will include a great deal, and in some cases all,

of the data it needs to function, at the time it is first

downloaded from the distributor. Some distributors place

an arbitrary limit on the size an application can be, if it is

to be downloaded over a cellular connection; large apps

can only be downloaded over a WI-FI connection. This

prevents an app from consuming an excessively large

amount of a user’s cellular data allowance at the time it is

first downloaded. There are no such safeguards with web

apps, and this can impact on both performance and cost

to the user. It should be noted, however, that good

developers will attempt to design web apps with this in

mind, and it is certainly possible to develop efficient, fast,

data-economic web apps.

Another consequence of the contrasting use of data is

that with most native apps it is possible to use some,

most, or even all of the app’s functionality with no

Internet connection at all. The app’s content and

programming code is contained in the app when it is first

downloaded. It may also be programmed to detect the

presence or absence of a web connection, and modify

itself accordingly. If parts of the app require a connection,

but the user is currently offline, the app may hide or

modify those functions, or present the user with a

notification about the need to be online to use that part

of the app. No such niceties exist for web apps; they

simply will not work.

Finally, the use of native APIs enables developers to give

users the option of accessing information and services on

their device outside of the application they are using. This

includes contact lists, calendars, photo and media

libraries, and shared credentials (such as those for social

media). Apps that enable users to add an event to their

calendar, send something to a contact, or use media on

their device, typically do so using native APIs.

Facebook: A case study (and cautionary tale)

Some of the most high-profile mobile applications on any

platform are those developed by the social networking

behemoth Facebook. This stands to reason, given its

enormous user base, and the degree to which social

media usage has been one of the biggest drivers of

smartphone uptake.

Facebook initially chose a predominately web-based

structure for its mobile applications. The company

Australasian Medical Journal [AMJ 2013, 6, 1, 7-14]

10

distributed apps for various platforms that were essentially

native containers full of web content, built using the HMTL5

web standard. HTML5 is the latest set of specifications for

HyperText Markup Language, the primary language used in

web development. These specifications make it more suited

to mobile development, and allow new functionality designed

to reduce dependence on outdated technologies. One of the

main reasons for Facebook’s decision was a desire to be

flexible. Facebook is a developer-driven company with a

strong preference for agility and quick iteration. In other

words, the company likes to try new things often. Some

software companies are more cautious, pilot testing and

perfecting new features over long periods of time before

releasing them to the public. Facebook prefers to quickly

develop new features and new ways of presenting content

and to trial innovations with some parts of their massive user

base before pushing changes out to all users.

This approach is problematic with fully native apps, where

changes must be reviewed and approved by the various

application curators before going live, a process which can

take some time. Furthermore, it is difficult or impossible to

make changes for one group of users, but not others, making

Facebook’s approach to large-scale beta testing unfeasible; if

the test process breaks something in the app, it breaks for all

300 million of its mobile users, rather than just a “few”

million.

So Facebook took a web-first approach to developing its

mobile apps. The resulting apps were almost universally

derided as slow, buggy, inconsistent, and prone to frequent

crashes. There was some disagreement over why this was –

the apps were bad because web apps are generically inferior,

or simply because they were poorly programmed. Going

straight to the source, Mark Zuckerberg, CEO of Facebook,

expressed clear thoughts on the issue. He made the following

comments at a technology conference in September 2012:

“The biggest mistake we made as a company was betting

too much on HTML5, because it’s just not there yet. We

had to start over and rewrite everything to be native. We

burned two years. It may turn out it was one of the biggest

if not the biggest strategic mistake [we made]…We

believed that because it used the same technology as the

desktop, we thought it could improve. But it wasn’t good

enough. We realised the only way we could get there was

to go native.”
1

So Facebook began from scratch, building new, platform-

specific native applications. The iOS version was released in

August 2012, and showed a vast improvement in speed (up to

twice as fast), stability and device integration.
2

Of course, the

actual content (users’ posts, comments, photos, video

and so on) is still delivered via the web. The difference

was that the scaffolding containing this content was

written natively, and the tools used for accessing things

like the device camera and GPS aerial, were built using

native APIs. At the time of writing, a native Android

application remains under development. On the day the

new, native iOS application was released Mick Johnson,

Facebook’s iOS product manager, said:

“A native Facebook iOS app has been arguably the

most-wanted app on the planet. It doesn't look much

different, but should satisfy the hundreds of millions of

users begging for an experience that isn't cripplingly

slow.”
2

Consider that the phrase “cripplingly slow” referred to his

company’s own product that was, just the day before this

statement, used by more than a hundred million users as

a primary access point for Facebook’s content. This is a

telling statement indeed.

All native, all the time?

It may appear at this juncture that I am advocating native

app development exclusively, for all mobile application

projects. I am not. I have described the native/web app

distinction as a spectrum. This is truer today than ever

before; the line between the two is becoming increasingly

blurred. Facebook’s new applications are not entirely

native; the content is of a necessity delivered via the web,

and some parts of the app are still built using HTML5, to

enable regular updating. However, their apps are now

considerably more native than they were before.

Some apps will always be more suited to web or hybrid

development than others, and it is not always easy to

know when this is the case. However, there are a few

considerations that may help in the analysis;

characteristics of apps, which may mean they may be

suited to development as a web or hybrid app:

1. Apps which have a lot of content that must be

delivered via the web. Some apps need regular or

even constant content updates – Facebook and

Twitter are good examples. In this case native

development has fewer advantages, with respect to

download speed and impact on a user’s download

quota. The app will need to retrieve data no matter

how it is built. Furthermore, users will need to have

an active connection to use the core functionality of

the app. However, the lesson from the Facebook

Australasian Medical Journal [AMJ 2013, 6, 1, 7-14]

11

story is that, even with an app that is primarily based on

web content, it is risky to build the structures that

display that content non-natively.

2. Apps that need to be updated regularly and quickly.

Web and hybrid apps have much greater flexibility, and

no one needs to monitor or approve content or

structural changes, aside from the developers and

content managers themselves. It should be noted,

however, that the time taken for native app approval is

not unduly long in most cases. At the time of writing, the

average approval time for the Apple iOS App Store was

estimated at 8.35 days.
3

Google’s Play Store, for Android,

takes a less-curative approach, and apps are often

approved on the same day, sometimes within the hour.

3. Apps with a customised user interface. If you use a

smartphone, consider the apps on it. In particular,

consider the apps it came with pre-installed. You may

not even think of these as “apps” - the phone dialer, the

address book, the email client, the music player, and so

on. These apps share common elements such as tab

bars, buttons, content choosers and navigation

structures. These apps, and the common structures,

were built by the company which developed your

device’s operating system – Apple if it is an iPhone,

Google if it is an Android phone, and so on. Now consider

the other apps – the ones you chose to download. Some

of those apps have similarities with the inbuilt ones –

tools and structures where the developer has chosen to

use the native APIs. Some will have less in common, and

some will have nothing in common at all – they are said

to have a completely custom user interface. Generally

speaking, utility apps that have roughly similar kinds of

features to the inbuilt apps tend to use somewhat

standard interfaces (although many do not, and the

number continues to grow). Games, on the other hand,

tend to be entirely customised. As noted above, web or

hybrid apps that try to replicate native user interfaces

often do so poorly. Apps, like games, which have their

own unique look and feel do not need to be concerned

with this; they actually benefit from a consistent look

from one device family to another, and a non-native

approach to development may be entirely appropriate.

4. Apps which must be accessible to the widest possible

number of users, and where this must be achieved

within a limited budget. The various options for non-

native development can make it feasible to develop for

multiple platforms relatively cheaply, thus theoretically

making it available to the largest number of potential

users.

Potential users are not users (yet)

The italics in the last sentence are significant, and this

serves as a segue into an important final point. It stands

to reason that someone developing an application would

typically want as many people as possible to use it. We

place great significance on the size of the user base,

taking it as one way of validating the project and justifying

its expense. The app may have features that rely to some

extent on the number of users, and of course if there is a

commercial aspect, then the level of uptake will have a

significant impact on the product’s viability. In the health

field, additional pressures may come to bear. The funders

may require that the service be universally accessible to

all potential users. While the goal of gaining as many

users as possible is perfectly reasonable, here are two

important things to consider.

1. Smartphone users ≠ app users. By “app users” here

I mean people who are actively engaged with the

third-party application ecosystem of their chosen

device platform. People who are confident with the

process of finding and installing apps on their device,

who explore apps, act on recommendations to try

this or that app, or generally have the inclination to

wonder if an app exists for any particular need or

problem they may have.

Users of the different mobile platforms display very

different patterns of use. A study in June 2012
4

compared the two dominant platforms, iOS (Apple)

and Android (Google), and found iOS users to be

52% more likely to retain an app on their device than

Android users. On average, 35% of iOS users

launched an app more than ten times after

downloading it, compared to 23% for Android users.

Users of iOS also displayed a lower rate of one-time

usage – instances where they installed an app,

opened it once, and never used it again. Another

telling statistic is the rate at which iOS users keep

their devices up-to-date with the latest version of

the operating system. Apple released iOS6, the latest

upgrade to its operating system, in September 2012.

In just the first week of availability, 100 million

devices – around a quarter of those in use – had

been upgraded. Fifteen per cent of devices were

upgraded in the first 24 hours alone. The current

install base is estimated at around 60%.
5

In contrast,

at the time of writing Google estimates that just

1.8% of Android devices run the latest version,

released in June 2012.
6

Running dated versions of

the operating system limits the range of apps that

can be installed. Prudent developers must ensure

Australasian Medical Journal [AMJ 2013, 6, 1, 7-14]

12

their apps are backwards compatible, meaning that in

many cases they must eschew the use of the latest and

greatest features of the platform.

There are several reasons for this discrepancy. The iOS

platform had a head start of several years, and became

commercially lucrative for application developers in a

relatively short space of time. This meant that a great

many developers began, and continue, to develop for

the platform, leading to a wide range of apps available

for consumers. Apple’s curative approach to application

approval also meant that, at least initially, the quality of

apps was relatively high – although the rapid growth of

the platform, and the sheer number of new applications

being submitted for distribution has led to something of

a decline in the stringent enforcement of standards. This

has led to a self-perpetuating cycle in the iOS app

ecosystem. Users came to expect a wide selection of

high-quality apps, therefore they became more likely to

explore and use new apps, therefore the platform

became more appealing for developers; rinse and

repeat.

In contrast, the Android platform continues to grow in

popularity, but has not yet achieved the kind of app

ecosystem that exists for iOS. This may be a factor of the

lower barrier to entry (leading to a comparatively higher

proportion of low quality apps), the greater difficulty in

monetising apps (it is much easier to download an

Android app illegally, for free, than one for iOS) or the

fact that Android developers have a much more difficult

task optimising applications to the myriad devices they

must support. Often the most realistic strategy is to take

a “lowest common denominator” approach to ensure

that apps work across the widest range of devices,

running the widest range of operating system versions.

This impacts on quality and perpetuates the problem of

app engagement and commercial viability.

Finally, Android devices typically cost less and are more

likely to be fully subsidised by the telephone carrier. As it

becomes increasingly difficult to find a mobile phone

that is not a smartphone, many people may find

themselves owning an Android device almost by default.

They simply wanted to purchase a new phone, have no

intention to engage in app use or any other use aside

from making calls and sending SMS messages, and were

sold an Android device as the least expensive option (and

often the one with the largest sales commission).

All of this adds up to the fact that, in estimating a

potential user base, and deciding on platforms to

support, it is important to not simply look at usage

statistics in isolation. So, although Android recently

reached parity with iOS in terms of Australian user

base (38% of all mobile phones, compared with 37%

for iOS),
7

it is not a given that half of a given app’s

user base will be on the Android platform. The

picture is far more complex than this.

2. Everything is a trade-off. Even given the above, it

may be tempting to think that there is nothing to

lose in cross-platform development. Even if users on

a given platform may be less likely to find and use

the app, at least it is theoretically available to them.

When you add in the fact that, in some cases, native

development may be more expensive, it may almost

be considered a “no-brainer”.

But once again, it is important to consider the

implications. Developing an application capable of

functioning on a wide range of devices requires

compromises. Each of those devices has different

specifications and capabilities, and non-native

development will often involve the “lowest common

denominator” approach described above, to deal

with these differences. Application art – graphics,

images, buttons and so on – may need to stretch to

accommodate different screen sizes and resolutions,

and this will typically lead to an inferior visual

experience. Alternatively certain kinds of art may

need to be avoided altogether. Developers will need

to trade off performance and robustness –

optimising the app for high performance may mean

it is likely to be “buggy” on devices with lower

capabilities, while opting for “safety-first” could

mean the app has poor performance, even on

higher-spec devices.

These compromises may make an app less palatable

for users, who have come to expect a high standard

in mobile software. The danger is that, in trying to

maximise your potential user base, you have

effectively limited your reach by creating a

compromised product. When Facebook delivered a

substandard mobile app, hundreds of millions of

people still used it because they wanted to access

the service via mobile and, to them, subpar was

better than nothing. It is fair to assume that health

professionals looking to develop a mobile

application do not begin with an existing user base

of a billion people.

Consider this analogy. You are developing a general-

Australasian Medical Journal [AMJ 2013, 6, 1, 7-14]

13

purpose printed health resource. It is suggested that you

use an extra-large type size, to make the material

accessible for older people or people with limited sight.

The argument is that doing this will maximise the

number of people who may potentially access the

information, and that “there’s nothing to lose”, because

people with normal sight can still use it. However, doing

this will involve compromises. If space is limited (say, in a

brochure) images may have to be omitted, or reduced in

size, to accommodate the text, and this may reduce the

resource’s impact. If it is not, the resource may become

much larger, impacting on production cost and potential

acceptability. If it is intended as a quick read for a GP’s

waiting room, and it appears to be very substantial, it

may be less likely to be used. A decision in this case

needs to be based on a clear understanding of the core

target audience, the likelihood of various categories of

people using the resource, and any other options for

accessing the information.

My point here is that, although in general terms

maximising accessibility is a worthwhile goal, it is not a

simple calculation to make. If this is true for print

resources, it is especially true for software, where so

many more variables are at play.

Conclusion (and, finally, the five questions)

Mobile technology provides many opportunities for health

professionals, service providers and health promoters. It is

immediately accessible, is quickly becoming ubiquitous, and is

increasingly turned to by Australians for all manner of

information, including health information.

However, the process of contracting developers to build

software can be fraught. Quotes can vary wildly – to the

extent that it can be possible to wonder if different

developers are proposing to build entirely different things. In

fact, this is a pertinent question to ask, because this may very

well be the case. Software development is not an “A+B=C”

equation. When presented with a particular task (your

application concept), a developer must choose from a

multitude of different ways to accomplish that task, taking

into consideration another multitude of variables. Not

dissimilar to what a GP would have to do when asked the

question, “Can you help me to be healthier?”

There are many questions that can assist in understanding and

comparing proposals from different developers. Some are

obvious, and can easily be understood by people with no

experience in software development – what are the

timeframes, how experienced are the developers, what hourly

rate is being proposed, what guarantees are involved, who

owns the final product, and so on. But in the case of

mobile software, I have made the case that there are

other important questions that relate to the core DNA of

an application.

So, then, the questions.

1. Are you proposing to build this as a native or

web application?

2. If it is to be a native application, is it genuinely

native (i.e. written in a platform specific

language) or cross-compiled (written using a

third-party tool, then outputted for a range of

devices)?

3. Which platforms will be supported, and why?

4. Why do you think this is the best approach?

5. What compromises will you need to make, in

order to build using this approach?

Of course, answers to these questions will not provide a

straightforward answer to the pivotal one – “which of

these proposals should I choose?” But the responses

should assist in weighing up proposals and making

educated guesses at the potential quality, reach and

appeal for a given application. There are no right answers,

but some are better than others. Generally speaking,

“that’s the only way we know how”, “that’s the cheapest

way”, or “I don’t really know” should be considered with

caution.

If nothing else, having a conversation that goes deeper

than the practicalities of the application at hand, and

touches on the developer’s underlying philosophy and

approach to development, should provide insight into

their knowledge and professionalism. Even if you do not

understand everything they say, you will come away with

a sense of the degree to which they “know what they’re

talking about”. You may even gain some understanding of

just what kind of shovel you’re about to buy.

References
1. Forbes. Facebook CEO Mark Zuckerberg: We Burned

Two Years Betting On Mobile Web Vs. Apps. 2012 [cited

15 November 2012]. Available from:

http://www.forbes.com/sites/roberthof/2012/09/11/mar

k-zuckerberg-we-burnt-two-years-betting-on-mobile-

web-vs-apps/.

2. Hamburger E. Facebook for iOS goes native, waves

goodbye to HTML 5. 2012 [cited 20 November 2012].

Available from:

http://www.forbes.com/sites/roberthof/2012/09/11/mar
http://www.forbes.com/sites/roberthof/2012/09/11/mar

Australasian Medical Journal [AMJ 2013, 6, 1, 7-14]

14

http://www.theverge.com/2012/8/23/3262782/facebook-for-

ios-native-app.

3. Shiny Development. Average App Store Review Times.

2012 [cited 22 November 2012]. Available from:

http://reviewtimes.shinydevelopment.com.

4. Localytics. App Retention Increasing; iPhone Ahead of

Android. 2012 [cited 15 November 2012]. Available from:

http://www.localytics.com/blog/2012/app-user-loyalty-

increasing-ios-beats-android/.

5. Chitika Insights. 60% of iPhones on iOS 6, iPad and iPod

Touch Close Behind. 2012 [cited 15 November 2012].

Available from: http://www.zdnet.com/60-percent-of-

iphones-now-running-ios-6-report-7000005169/.

6. Kingsley-Hughes A. Android 4.1 'Jelly Bean' reaches 1.8

percent market share. 2012 [cited 20 November 2012].

Available from: http://www.zdnet.com/android-4-1-jelly-

bean-reaches-1-8-percent-market-share-7000005096/.

7.Marketing Magazine. Android dethrones iPhone as most

owned smartphone platform in Australia. 2012 [cited 20

November 2012]. Available from:

http://www.marketingmag.com.au/news/android-dethrones-

iphone-as-most-owned-smartphone-platform-in-australia-

17252/ - .ULMXd6XHYld.

ACKNOWLEDGEMENTS
The author acknowledges the contribution of Mr. Adam Shaw,

who provided technical advice on some aspects of this paper.

PEER REVIEW
Not commissioned. Externally peer reviewed.

CONFLICTS OF INTEREST
The author works as an application developer, and consultant,

on a contractual basis.

http://www.theverge.com/2012/8/23/3262782/facebook-for-
http://reviewtimes.shinydevelopment.com/
http://reviewtimes.shinydevelopment.com/
http://www.localytics.com/blog/2012/app-user-loyalty-
http://www.localytics.com/blog/2012/app-user-loyalty-
http://www.zdnet.com/60-percent-of-
http://www.zdnet.com/android-4-1-jelly-
http://www.marketingmag.com.au/news/android-dethrones-
http://www.marketingmag.com.au/news/android-dethrones-

