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Abstract 

 

Hyperthermia (HT) means using controlled temperatures of 

40-45
°C

 for cancer treatment. HT is applied with different 

methods e.g. superficial-HT, locoregional deep-HT, interstitial-

HT, intracavity-HT, and whole body-HT. HT can apply in 

different tumor sites such as breast cancer, melanoma, head 

and neck, cervix cancer, and glioblastoma. Literatures show 

that addition of HT to radiotherapy, chemotherapy, or both, 

will result better tumor response rate, local control, and 

survival rate; without increasing toxicity. HT can also improve 

palliative effects in patient. In recent years, due to substantial 

technical improvements made in achieving selected increase 

of temperatures in superficial and deep-seated tumors, 

thermometry, and treatment planning; HT is becoming more 

clinically accepted in Europe and the USA. HT, as an adjunct 

cancer treatment modality, is certainly a promising approach; 

however, it is not well known yet worldwide. Therefore, it 

seems there is need to know more about that. The purpose of 

this review is to provide an overview on the application of HT 

combined with conventional cancer treatment modalities, 

mainly radiotherapy. The article also introduces mechanism of 

HT, heating delivery modes, thermometry, and it summarizes 

results of randomized trials form Western research groups. 

 

 

Introduction 

Nowadays, to eradicate tumor cells and achieve better clinical 

results, combined treatment regimens are being used [e.g. 

surgery + radiotherapy (RT), surgery + Chemotherapy (ChT), RT 

+ ChT, RT + gene therapy, RT + immunotherapy] [1, 2, 3, 4]. The 

reason for combination therapy is to increase survival rates 

and ensure that all tumor cells are eradicated. Respecting to 

RT, one of the most important problems is hypoxic cells in the 

centre of tumors which may not be eliminated by using RT 

alone. Due to insufficient blood perfusion; these cells are more 

resistant to RT [5]. The Oxygen Enhancement Ratio (OER) for χ  

 

 

 

 

 

 

 

 

and γ Rays is 2-3. Thus, to reach the same cell damages in 

hypoxic conditions, one needs to increase radiation dose 

2-3 times; that certainly will increase the absorbed dose in 

normal tissues [5]. During recent decades, the following 

treatment procedures have been tested to overcome 

hypoxic cells:  

• Radiotherapy using a high LET (Linear Energy Transfer) 

ray, e.g. neutron, with high penetration and low OER [5]. 

• Hyperbaric oxygen, there are certain methods of 

increased oxygen delivery by the blood such as 

normobaric oxygen/ carbogen breathing, nicotinamide, 

blood transfusion, erythropoietin [6, 7]. 

• Using drugs that specifically increase sensitivity of 

hypoxic cells (see below: section Chemotherapy plus 

hyperthermia) [8, 9, 10]. 

• Hyperthermia (HT), studies show that the controlled 

increased of the tumor temperature by 3-8
°C

, above 

normal body temperature, for 60-90min, remarkably, 

increases radio- and chemo sensitivity of the hypoxic cells 

[11, 12]. 

 

The purpose of this review is to introduce HT as an adjunct 

cancer treatment modality with conventional cancer 

treatment modalities. However, the focus is mainly on the 

issues that are related to using HT in combination with RT. 

The article also introduces HT mechanism, various HT 

delivery modes, thermal dosimetry, and briefly shows 

results of randomized trials performed by Western 

research groups during last two decades. 

  

The history of hyperthermia  

The word HT comes from the Greek HYPER, i.e. "over, 

beyond" and THERME, i.e. "heat". For millennia, mankind 

has recognized the therapeutic benefit of using thermal 

baths as a mean of treating malignant and infectious 

diseases. As far back as 5000 B.C., ancient Greeks and 

Egyptian doctors recognized the value of heat in some 

medical treatments [13].  

 

For many years, scientists have recognized that cancer 

cells are more sensitive to heat than normal cells, and 

that at high temperatures cancer cells break down [14]. In 

the late 19
th

 Century, physicians and scientists began 

studying the curative effects of hot mineral waters and 

concluded that its physiologic effects on the body were 

responsible for the cures witnessed [13]. A worldwide 

interest in HT was initiated by the 1
st

 international 

congress on hyperthermic oncology in Washington DC in 

1975, when it was shown that HT combined with other 

treatment modalities yielded markedly improved results. 

In the last two decades HT has been used in conjunction 

with RT and/or ChT for cancer treatment.  
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Hyperthermia mechanism in treatment  

In normal tissues, blood vessels dilate when heat is applied, 

dissipating the heat and cooling down the cell environment. 

Unlike healthy cells, a tumor is a tightly packed group of cells, 

and blood circulation is restricted and sluggish [15,16]. At sites 

with insufficient perfusion, areas with hypoxia and a low pH 

will develop [17]. Tumor masses tend to have hypoxic cells 

within the inner part of the tumor. Cells in chronic hypoxic 

areas are relatively radioresistant, but very sensitive to heat 

[18,1920]. In summary, prolonged hypoxia generally leads to 

metabolic changes, such as acidity, and it is these changes that 

are responsible for the increased sensitization to 

hyperthermia [21,22,23,24]. 

 

HT is especially effective in treating cells under conditions of 

hypoxia and low pH. HT damages the membranes, 

cytoskeleton, and nucleus functions of malignant cells. It 

causes irreversible damage to cellular perspiration of these 

cells. Heat above 40
°C

 also pushes cancer cells toward acidosis 

(decreased cellular pH), which decreases the cells’ viability and 

transplantability. Furthermore, heat preferentially kills cells in 

the S phase of the cell cycle, which are known to be resistant 

to RT. It is also thought that HT induced accumulation of 

proteins inhibits the malignant cells from repairing the 

damage sustained. Tumor blood flow is increased by HT 

despite the fact that tumor-formed vessels do not expand in 

response to heat [25]. This makes HT an ideal complementary 

treatment to RT.  

 

The effect of hyperthermia on tumor cells 

Under well-defined nutrient conditions, acute hypoxia alone 

does not have any significant influence on the cellular 

response to hyperthermia [26,27,28]. However, a selective 

tumor cell killing effect is achieved at temperatures between 

40 and 45
°C

 in vivo, that is related to tumor physiology. The 

architecture of the vasculature in solid tumors is chaotic, 

resulting in regions with hypoxia and low pH [29,30,31], which 

is not found in normal tissues in undisturbed conditions. These 

environmental factors make cells more sensitive to HT. The 

effect of HT depends on the temperature and exposure time 

[32]. Generally, normal tissues tolerate a hyperthermic 

treatment of 1 hour up to 45
°C

 without relevant clinical 

damage [33]. Only nervous tissues appear more sensitive. For 

the central nervous tissue, irreversible damage was found 

after treatment at 42-42.5
°C

 for longer than 60 min [34]. 

Treatment of peripheral nervous tissue for more than 30min 

at 44
°C

, or an equivalent ‘dose’, results in temporary functional 

loss, which recovers within 4 weeks [35]. The main mechanism 

for cell death is probably protein denaturation, observed at 

temperatures between 40-45
°C

, which leads to alterations in 

multimolecular structures like cytoskeleton and membranes, 

and changes in enzyme complexes for DNA synthesis and 

repair [36]. HT also interferes with the cellular repair of 

radiation-induced DNA damages, probably by an effect on 

cellular proteins [37]. 

 

Radiotherapy plus hyperthermia 

The HT mechanisms and its effect on tumor cells justify using 

additive complementary of heat and RT. Why HT is an ideal 

companion to RT? It is because that radiation kills the 

oxygenated outer cells, while heat acts on the inner low-

oxygen cells. HT oxygenates the hypoxic cells and so 

making them more susceptible to radiation damage. Two 

issues should be considered in the use of combined RT 

and HT: 

• The Thermal Enhancement Ratio (TER): TER is 1.5-2 in 

temperatures of 40-45
°C

. For radiation-induced cell kill 

TER is greater under hypoxic conditions, increases with 

higher temperatures and longer exposure times, and 

decreases with longer time-intervals between the two 

modalities. Maximum TER is obtained when RT and HT are 

applied simultaneously. In vivo studies have 

demonstrated that the effect of RT can be enhanced by 

HT up to 1.2-5 [38,39]. Nevertheless, using RT and HT 

spontaneously is not possible for all patients and tumor 

sites. Maximum therapeutic gain will be obtained when 

HT is used within 6 hrs after RT [40,41,42,43,44,]. 

• Thermotolerance: most of the tumor cells are killed 

when temperature ≥ 43
°C

 is applied for 40-60min, but a 

few of them remain alive. The remaining cells got 

resistance to heat, which is called thermotolerance and 

returns to ground state in a few days. The higher the 

initial temperature induces a higher thermotolerance. The 

kinetics and degree of thermotolerance that develops is 

dependent not only on the heating temperature, but also 

on the cell type, the time of heating, and the interval 

between successive heat treatments [45]. However, 

applying a standard RT dose, i.e. 2 Gy/fraction, will not 

affect a thermal resistance [46, 47].  

 

A number of randomized controlled trials comparing RT 

plus HT to RT alone have demonstrated that the average 

complete response for RT alone can be increased 

significantly by the addition of HT [48, 49, 50, 51, 52]. 

Overall, HT is probably the most potent radiosensitizer 

known to date [53]. 

 

Chemotherapy plus hyperthermia  

For the combination of ChT and HT, the following process 

can explain the additive effects. Drug concentration will 

be less in the insufficiently perfused tumor regions. In 

addition, many drugs are potentiated by heat. 

Furthermore, it has been shown for mitomycin C, 

nitrosureas, cisplatin, doxorubicin, melphalan, 

cyclophosphamide, anthracyclins, mitoxantrone, and 

bleomycin that the addition of HT to ChT can counteract 

drug resistance [54,55,56,57,58]. Generally, interaction is 

only seen when the two treatments are given in close 

sequence. The most important mechanisms for an 

interactive effect are increasing intracellular drug uptake, 

enhanced DNA damage and higher intratumor drug 

concentrations, resulting from an increase in blood flow.  

 

The drug enhancement ratio depends on temperature 

and exposure time. The effect of these drugs can be 

enhanced by a factor of 1.2-10, and an extremely high TER 

of 23 was even observed for in vitro application of 

melphalan to drug-resistant cells at temperature of 44
°C

 

[54]. With antimetabolites vinblastine, vincristine and 

etoposide, most experiments did not show an interactive 

effect. In the case of etoposide, cytotoxicity was even 
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reduced, which was explained by instability of the drug at an 

increased temperature. Whether the clinical combination of 

HT and ChT leads to therapeutic gain depends on the 

temperature increase in the organs for which the used drug is 

toxic and the heating method [59, 60, 61, 62, 63, 64, 65, 66, 

67, 68, 69, 70, 71]. 

 

Trimodality treatment 

There is an increasing interest in the clinical application of 

trimodality treatment, in which RT, ChT and HT are combined. 

Earlier trimodality treatment trials in Japan demonstrated the 

value of adding HT in patients with oesophageal cancer [72, 

73, 74,]. More recent studies on preoperative treatment in 

rectal cancer, head and neck tumors and recurrent breast 

cancer have revealed that trimodality treatment is feasible 

and appears effective [75, 76, 77, 78, 79, 80]. 

 

Methods to increase tumor temperatures  

To reach temperatures 3-8
°C

 above normal body temperature 

in a defined target volume is a technical challenge and still 

under development [81]. HT, in most of the cases, is applied 

using electromagnetic waves. Electromagnetic energy is 

transferred to the material by polarization and rotation of 

dipolar molecules, and drift of electrons and ions. The amount 

of energy transferred by the electric field to a material can be 

derived from Poynting’s theorem, where the average power 

(P) deposition to the material is given by:  

(1)                             
21

2
P Eσ= ⋅                                       

where σ is electric conductivity (Sm
-1

) and E is the complex 

electric field vector. For HT the energy absorption in a material 

is often normalized to its mass density [ρ (kgm
-3

)] and is then 

called specific absorption rate (SAR), measured in Wkg
-1 

[82]: 

 (2)                           
21

2
SAR Eσ

ρ
= ⋅                                     

Human basal metabolic rate is above 1 Wkg
-1

. Perfusion 

counteracts the temperature rise. Perfusion rates in human 

tumors are around 5-15 ml/100g per min, but they vary 

widely. To reach therapeutic temperatures of 40-45
°C

 

necessitates power density of 20-40 Wkg
-1

 at the target region 

[81]. At present, the optimum temperature distribution for 

clinical purposes is unknown. Temperature distributions 

achieved to date have limited absolute values and 

homogeneity, mainly because of physical and physiological 

characteristics such as electrical tissue boundaries, local 

perfusion variations, and perfusion regulations. Approximately 

50% of deeply located tumors reach at least 42
°C

 at one 

particular measurement point. 

 

Studies have shown that uncritical adoption of preclinical 

results into clinical guidelines for tumor temperatures is not 

justified. Nevertheless, many phase II clinical studies have 

shown associations between tumor response and 

characteristics of temperature distribution (minimum 

temperature or minimum thermal dose in the tumor area). 

Even though the tumor temperatures that have to be reached 

for clinical efficacy are still unclear, one should achieve 

temperature distributions as high, in the range of 40-45
°C

, and 

homogeneous as possible [81].  

Local hyperthermia 

“Superficial tumors can be heated by means of antennas 

or applicators emitting mostly microwaves or radiowaves 

placed on their surfaces with a contacting medium. 

Several types of applicators have been used clinically, i.e. 

waveguide applicators, horn, spiral, current sheet, and 

compact applicators” [81]. The electromagnetic coupling 

of the applicator to the tissue is ensured by a water bolus. 

Commercially available electromagnetic applicators have 

a typical emitting diameter of 15cm at a frequency of 150-

430MHz with therapeutic depths not more than 3cm [81].  

 

Interstitial and endocavitary hyperthermia 

For interstitial HT, antennas or applicators are implanted 

within the tumor, and in most cases a heat treatment is 

administered in combination with brachytherapy. “This 

technique is suitable for tumors that are less than 5cm in 

diameter, but mainly in any location feasible for 

implantation (i.e. head and neck, prostate)” [81]. “Various 

antenna types are available, including microwave 

antennas, radiofrequency (RF) electrodes, ultrasound 

transducers, heat sources (ferromagnetic seeds, hot 

water tubes), and laser fibers. To ensure therapeutic 

temperatures at all points of the target volume requires a 

distance between adjacent applicators of not more than 

1·5cm. But such close positioning is very invasive. 

Furthermore, positioning and orientation of microwave 

antennas can be critical because of their sensitivity to 

interference. The restricted axial length results in further 

limitations in the SAR distribution. The development of 

segmented RF electrodes leads to an interstitial HT 

system capable of three-dimensional (3D) control, 

ensuring improved temperature control in the target 

volume. These systems are undergoing clinical evaluation. 

Endocavitary antennas are inserted in natural openings of 

hollow organs such as the urethra, rectum, vagina, cervix, 

and oesophagus. They are based on the same physical 

principles as interstitial antennas, with dimensions in the 

range of centimeters (and therefore, larger clinical 

penetration depth)” [81]. 

 

Regional hyperthermia and part-body hyperthermia 

The cylindrical Sigma family applicators, with arrays of 

antennas are used for deep-seated tumors, i.e. of the 

pelvis or abdomen. Patient is positioned within the 

applicator and the space between applicator and skin is 

filled with a water bolus. For children and lower 

extremities the Sigma-30 (diameter: 30cm) or Sigma-40 

(diameter: 40cm) is used. The Sigma-60 (diameter: 60cm) 

is a widely spread applicator, which consists of four dipole 

antenna pairs arranged in a ring around the patient. Even 

though each antenna pair can be controlled in phase and 

amplitude, there are restrictions in terms of the 

generated SAR distribution. “Model calculations show 

significant improvements in control of power distribution 

by increasing the antenna number with the assumption of 

optimum adjustment of phases and amplitudes. The 

frequency of 100-150MHz may be an additional variable” 

[81]. The 3D anatomy decisively influences the power 

distribution. The theoretical studies led to use of 

applicator, i.e. Sigma-Eye (38×58cm) with 12 channels, 
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which allow 3D SAR control. The disadvantage of the Sigma-

Eye is that it can not use for all patient sizes. A new generation 

of the applicators, i.e. Sigma-60-Ellipse (37×58cm), which is 

elliptical in shape, is under investigation [83]. Recently, we 

found that the Sigma-60 and the Sigma-Eye can be replaced by 

the Sigma-60-Ellipse applicator [84]. 

 

Whole-body hyperthermia 

There are different systems for application of whole-body-HT. 

Here we described two most important systems.  

• “The Aquatherm system is an isolated moisture-saturated 

chamber equipped with water-streamed tubes (50-60
°C

) on 

the inner sides, in which the patient is positioned. Long-

wavelength infrared (IR) waves are emitted. A substantial 

increase in the skin blood circulation is induced, and energy 

absorbed superficially is transported into the systemic 

circulation. Since energy release through perspiration is 

blocked, the heating time is quite short (60-90min)” [81].  

• “The Iratherm-2000 system uses special water-filtered IR 

radiators, resulting in an IR spectrum with a maximum near to 

visible light. The penetration depth in this frequency range is 

about 2 mm” [81]. 

 

In carcinomas with distant metastases, a steady state of 

maximum temperatures of 42
°C

 can be maintained for 1 hr 

with acceptable adverse effects [33, 34]. Every system for 

whole-body-HT can cause superficial overheating, resulting in 

thermal lesions. Thus, careful continuous control of skin 

temperatures combined with controlled power input is 

required to ensure that the procedure is safe. With 

experience, systemic temperatures of up to 41·5-42·0
°C

 can be 

achieved with acceptable side-effects with both systems. 

Systemic toxicity can include cardiac disorders, changes in the 

coagulation system (thrombocytopenia and disseminated 

intravascular coagulation), and permeability of the capillary 

endothelial [34]. Because there is a large fall in peripheral 

resistance and consequent hypovolaemia, fluid substitution is 

necessary. Overcompensation can lead to pulmonary oedema 

in connection with the capillary leak syndrome. “Whole-body-

HT is clinically feasible, with systemic temperatures of 41·8-

42
°C

 achieved. However, the efforts needed (including 

intensive medical care) are much greater than for locoregional 

methods” [81]. 

 

Thermal dosimetry 

“The basic premise underlying the need for thermal dosimetry 

is the ability to write a verifiable prescription for HT” [85]. “As 

in any form of therapy, a sound dosimetric basis leads to 

unambiguous treatment, data acquisition, data reporting, 

quality assurance, and comparison of treatments” [86, 87]. 

During HT treatments, the measurement of the actual 

temperature distribution in the tumor or immediately 

adjacent tissue is crucially important to the clinical evaluation 

of the HT quality [88]. For superficial tumors, thermometers 

lie on the skin or introduce percutaneously. When deep-

seated tumors are under treatment, HT departments apply 

intratumor and/or intraluminal thermometry. Some 

researchers believe that intratumor thermometry is an 

absolute necessity to determine the temperature distributions 

achieved [89, 90, 91, 92]. Whereas, others suggest that if 

intraluminal thermometry is available, intratumor 

thermometry is neither an important requirement for 

prevention of toxicity, nor supportive for SAR-steering 

[93, 94, 95, 96, 97].  

 

In intratumor thermometry, thermal catheters must be 

implanted within the tumor either under CT guidance 

percutaneously or intraoperatively. In intraluminal 

methods, thermal probes are placed through the lumen in 

contact with the tumor [98]. Since, intratumor 

thermometry has some disadvantages (i.e. time 

consuming, painful for patient, side effects such as 

infection and tumor seeding) most of the HT-centers have 

abandoned this costly method. 

 

In order to obtain as much information as possible about 

the temperature distribution, a step-by-step movement 

of thermal probes (i.e. thermocouples, fiber-optic probes) 

within the catheter tracks allows the acquisition of data, 

which map a temperature profile through the treatment 

region. From all the temperature measurements acquired 

as temperature vs. time and temperature vs. depth plots, 

time-averaged temperatures can be calculated at each 

monitored site. In addition, the time-averaged 

temperatures above 10, 20, 50 and 90% of the monitored 

points (reported in terms of T10, T20, T50, and T90) and also 

Tmin, Tmean, and Tmax allow comparison of different HT 

treatments in regard to the quality of heating [99, 100, 

101]. More recently, the clinical application of the 

thermal isoeffect dose concept has been applied in 

retrospective analyses of clinical data. The purpose of 

such studies was to guide future clinical studies in which 

different treating protocols for different times at different 

temperatures are converted into equivalent minutes at 

43
°C

 [102]. 

 

3D non-invasive thermometry might be provided by 

magnetic resonance tomography (MRT), which can 

characterize temperature as well as perfusion [103]. 

Integration of a HT system in a tunnel-like MRT is 

technically demanding. This problem has been solved at 

the Duke University Medical Center, North Carolina, USA, 

with a smaller applicator for the thigh region [104]. A 

commercially available hybrid system, a 1·5 T tunnel 

magnet (MR Tomograph Symphony, Siemens) has 

installed at the Charité Medical Center in Berlin, Germany 

[105]. 

At present clinical HT has to rely on intratumor or 

intraluminal thermometry in most practical situations [92, 

95]. This invasive or minimally invasive thermometry is, 

besides the problems with the extremely limited 

information about highly inhomogeneous thermal dose 

distributions, a major clinical problem in the acceptance 

of HT [93, 106]. 

 

Under clinical circumstances the quality of the measured 

temperature distributions is critically dependent on the 

accuracy of the thermometry system and the distribution 

of the temperature measuring points over the target 

volume. Parameters with impact on the quality of 

measurement are the number of probes, their spacing,  
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and their location. Hence, mandatory to allow the technical 

and clinical quality analysis of the HT treatment delivered is 

that the quality of the collected temperature data is without 

dispute [107]. 

 

 

Table 1: Comparison of the results of radiotherapy (RT) vs. 

radiotherapy plus hyperthermia (RT + HT) in randomized 

trials from Western research groups until October 2009. 

 

Clinical results 

“The synergistic interaction between heat and radiation dose 

has been validated in certain clinical studies” [108]. In a review 

study van der Zee reported on all randomization trials 

performed until 2002. She reported 19 positive trials and 8 

trials with no significant difference following a combination of 

RT and ChT or RT plus ChT and HT compared with the same 

treatment without HT [108]. Since then, two more positive 

phase III trials of ChT + HT [109, 110], and one non-decisive 

trial of RT + HT [111] are published. Table 1 shows the results 

of all phase III trials, reported during 1991-2009, comparing RT 

alone vs. RT + HT, conducted by Western research groups. 

Earlier Falk and Issels reported on state of the art of HT and 

described beside phase III trials, also 17 selected phase I or II 

trials investigation, the effect of HT combined with RT, ChT, or 

both in total of more than 2200 patients [112]. All studies, 

except two, show a statistically significant higher (up to a 

doubling) tumor control and/or cure rate for the combined 

treatment modality. Additionally, all studies report 

comparable acute and late toxicity in both treatment 

arms. The positive results of the most recent trials explain 

the renewed enthusiasm in HT, which is reflected in the 

growing number of institutes interested in the application 

of HT [53]. 

 

Hyperthermia-induced toxicity  

Normal tissue toxicity will result directly from HT when 

the tolerance limits are exceeded. “Experimental studies 

have shown that most normal tissues are not damaged 

when the temperature over 1 h of treatment does not 

exceed 44
°C

“ [33]. During local-HT, it is not always possible 

to avoid higher temperatures due to the heterogeneity of 

the temperature distribution and the limited 

thermometry. The patient is not always able to feel 

painful hot spots, e.g. when the target area has been 

subjected to surgery in the past and sensitivity is 

disturbed. The toxicity from superficial-HT is usually a skin 

burn (in 25% of the patients with recurrent breast cancer 

[113, 114], healing with conservative treatment). During 

HT for deep-seated tumors the skin is extensively cooled, 

through which the hot spots will develop in deeper 

tissues. A temperature that is too high in subcutaneous 

fat or muscle tissue results in a feeling of pressure, which 

is not always recognized by the patient. As a result, 

patients may be reluctant to mention unpleasant 

sensations. Subcutaneous fat or muscle tissue burns do 

not usually cause much discomfort: the patient feels a 

subcutaneous lump, which is tender for a few days to a 

maximum of a few weeks and then disappears 

spontaneously. Subcutaneous fat burns were seen in 3-

12% of the patients treated with deep-HT. The risk of 

developing skin burns appears to be higher following 

treatment with a RF capacitive heating technique (5-16%) 

than with a radiative heating technique (0-3%) [115, 116, 

117]. The randomized studies did not show an increase in 

acute or late toxicity of RT. Whether the toxicity of ChT is 

enhanced depends on the temperature in the drug-

sensitive tissues. Toxicity from whole-body-HT depends 

on the patient’s general and the physiological conditions 

during the treatment [81]. Serious toxicity from regional 

HT perfusion with modern technology and proper choice 

of perfusate composition, flow rate and pressure, blood 

gas values, drug doses, temperature dose and scheduling, 

is limited [118, 119].  

 

Discussion and conclusion 

The technical application of HT is feasible and effective if 

combined with RT and/or ChT. Clinical studies on regional 

HT combined with RT, ChT or both have shown impressive 

results at clinical relevant temperatures in local advanced 

tumors of different entities in terms of objective response 

rate, local tumor control and survival rate. Especially in 

well defined clinical situations in breast cancer, 

melanoma, head and neck tumors, cervix cancer and 

glioblastoma, the addition of HT to RT significantly 

improves tumor response and survival rate; thus, should 

be considered as a presently proven therapy to improve 

patients’ outcome.  

 

Reference Tumor Endpoint N
@

 RT 

RT 

    + 

HT 

[113] Various 

superficial
*
 

All tumors  

Previously 

irradiated 

 

Complete 

response rate 

 

109 

39 

 

42% 

24% 

 

66% 

68% 

[114] All pelvic 

tumors
*
 

Bladder  

Rectum  

Cervix 

3 years overall 

survival 

 

358 

143 

101 

114 

 

24% 

22% 

22% 

27% 

 

30% 

28% 

13% 

51% 

[50] Breast cancer
*
 Complete 

response rate 

308 41% 59% 

[51] Glioblastoma 

multiforme
*
 

2 years survival 112 15% 31% 

[115] Various 

 

2 years survival 184 34% 35% 

[116] Melanoma
*
 

 

2 years local 

NED
®
  

134 28% 48% 

[117, 118] Head & neck
*
 

 

Complete 

response rate 

5 years survival 

 

44 

 

41% 

  0% 

 

83% 

53% 

[119, 120] Various Complete 

response rate 

overall  

In small tumors 

(diam.<3 cm)  

In large tumors 

(diam.>3 cm) 

 

 

236 

55 

 

181 

 

 

30% 

39% 

 

27% 

 

 

32% 

52% 

 

25% 

 

 
@

N= number of patients; *Statistical significant difference; 

®NED= no evidence of disease. 
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The clinical results give new insight into the mechanisms of HT 

in multimodal oncological treatments. HT is thought to affect 

tumor sensitivity to other treatments mainly through micro-

environmental factors such as pH. The hypothesis is that 

hypoxic and therefore resistant tumor regions are 

preferentially eliminated under HT conditions because 

associated hypo-vascularisation results in higher temperatures 

and higher sensitivity due to hypoxia. This assumption has 

been questioned, since chronic hypoxia also leads to an 

adaptation (development of tolerance), and the real 

temperature distribution on a cellular tissue level (hypoxic vs. 

well vascularised areas) is uncertain [81]. 

 

The results from experimental studies show that HT is both 

the ideal complementary treatment to, and a strong sensitizer 

of, RT and many drugs used in ChT. However, in spite of the 

remarkable therapeutic gain that has demonstrated in 

patients; HT still is not widely recognized as a useful 

treatment. There are several reasons for this lack of 

acceptance. Firstly, results from the 1
st

 randomized trial in the 

USA failed to show a benefit for adding HT to RT, which mainly 

was due to inadequate equipment and quality assurance 

procedures. Luckily, the next trials were mostly positive [108]. 

Secondly, most of the early positive randomized trials have 

been relatively small and/or were performed in Asia and 

Russia and therefore, have received less attention than the 

negative trial in the USA. The third reason is a weak 

advertising on HT and lacks public awareness. HT added to RT 

and/or ChT results in up to a doubling of complete response 

rate and survival [114]. If a drug were to achieve similar 

successes, its corporate sponsor would have announced it as a 

new breakthrough in cancer treatment and it would have 

received extensive attention from the media. HT equipment is 

manufactured by a few relatively small organizations with lack 

of the financial support for mass media promotion [120]. 

 

Nowadays, HT has been regarded as a beneficial adjuvant 

treatment, specifically recommended for locally recurrent 

tumors, and for primary cancers. HT is probably the most 

potent radio- and chemo- sensitizer known to date [53]. 

However, it is not yet a fully developed modality for all tumor 

sites, there are still problems with the routine clinical 

application of HT, and there is still room for further 

technological improvements. Nevertheless, new finding from 

combination of HT and gene therapy, immunotherapy, bone 

marrow purging, etc. made more interest to apply this method 

as an adjunctive treatment modality. Certainly, in the near 

future more patients will have benefit from the combined 

treatments including HT.    
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