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Abstract 

Background 

Causal models of physiological systems can be immensely 

useful in medicine as they may be used for both diagnostic 

and therapeutic reasoning. 

Aims 

In this paper we investigate how an agent may use the 

theory of belief change to rectify simple causal models of 

changing blood sugar levels in diabetes patients. 

Method 

We employ the semantic approach to belief change  

together with a popular measure of distance called Dalal 

distance between different state descriptions in order to 

implement a simple application that simulates the 

effectiveness of the proposed method in helping an agent 

rectify a simple causal model. 

Results 

Our   simulation   results   show   that   distance-based   belief 

change can help in improving the agent’s causal knowledge. 

However, under the current implementation there is no 

guarantee that the agent will learn the complete model and 

the agent may at times get stuck in local optima. 

Conclusion 

Distance-based  belief  change  can  help  in  refining  simple 

causal models such as the example in this paper. Future 

work will include larger state-action spaces, better distance 

measures and strategies for choosing actions. 

Key Words 

Belief Change, Belief Update, Belief Revision,  Causal  

Models, Glucose Metabolism, Diabetes 
 

 

What this study adds: 
1. This study explores the use of belief change to rectify 

causal models. 

2. It  employs  a  simple  non-probabilistic  causal  inference 

system for modelling blood sugar level in a diabetes patient. 

3. It   provides   a   novel   and   theoretically   well-founded 

account of knowledge evolution with potential implication 

for health care. 
 

 

 

Background 
It has been noted, for instance by Patel et al,

1 
that most AI 

techniques tend to uncover only simple relationships in 

data, and that their efficacy at discovering complex causal 

chains of relationships that underlie our understanding of 

domains such as molecular biology or epidemiology is  yet  

to be demonstrated. As they point out, “human expertise 

developed over centuries of  experience  and 

experimentation cannot be discarded in the hope that it will 

all be rediscovered (more accurately) by analysing data.”
1

 

 
Models of physiology have been extensively employed in 

expert systems. A simple model with a few relevant 

parameters and states of clinical interest can provide more 

valuable information than a complex model with hundreds 

of parameters. Such models may be used both for  

diagnostic and therapeutic reasoning.
2 

If the model is used 

for diagnosis, the observable parameters can be used as 

input to the model and the model predicts outcomes 

depending on the input. 

 

Method 
We attempt to understand how a simple causal model of 

glucose  metabolism  in  a  diabetes  patient  can  be  built 

incrementally by an agent using belief revision and update 

which   have   a   well   recognised   theoretical   foundation.
3-5 

Although  belief  revision  and  update  can  be  modelled  in 
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several ways, we employ a distance measure between sets 

of possible worlds to build causal models and analyse their 

effects on the revision and update process. 

 
Belief change 

In  the  AGM  model,
3-5  

an  epistemic  state  of  an  agent  is 

represented by a belief set, which is a set of sentences in a 

given language, closed under classical logical consequence 

operation, representing the beliefs of the agent. In light of a 

new piece of information, a belief set may need to be 

modified. These modifications are generally classified as 

being an expansion (addition of new sentences to the belief 

set), a contraction (removal of old beliefs from the belief 

set) or a revision (incorporation of some information 

inconsistent with the current belief set while maintaining 

consistency). 

 
In the case of contraction, a sentence must be removed 

from a belief set, along with other sentences that logically 

entail it. Since a number of sentences may collectively entail 

the sentence being contracted, a decision must be made as 

to which other sentences should be removed as well. 

Similarly, in revision, if the new sentence to be added is 

inconsistent with the belief set, some sentences may first 

need to be removed in order to maintain consistency before 

adding the new sentence, and this again presents us with a 

choice problem as in case of contraction. Given this 

connection,  it  has  been  shown  that  contraction  can  be 

defined in terms of revision using the Harper Identity,
4 

and 

revision in terms of contraction using the Levi Identity.
4

 

 
A guiding principle to follow when devising a 

revision/contraction operation is to conform to the criterion 

of information economy, i.e., to retain as much of the old 

information as possible. It is also vital that changes to the 

belief state are rational, and this is guided by a set of 

rationality postulates for the given operation. Given a belief 

set K and a proposition α, a contraction function prescribes  

a method for choosing which sentences to delete from K so 

that α is no longer a logical consequence of the contracted 

belief  set  K-α.  A  subset  of  K  that  does  not  entail  α  and 

strictly satisfies the two criteria above is a maximal subset 

of K that does not entail α. In general, such maximal subsets 

exhibit undesirable behaviour.
3,4 

A way out of this problem 

is to use a method called the partial meet contraction. This 

requires an ordering over such maximal subsets so that the 

best such subsets can be selected for this purpose. Though 

this and other methods describe general ways of 

constructing contraction functions, determining the content 

of the maximal subsets in question can be computationally 

costly.
6

 

An   alternative  method    to   constructing   contraction and 

revision functions is based on the notion of epistemic 

entrenchment.
4,5 

Some sentences may  be believed to be 

more important than others, and hence are said  to  be  

more epistemically entrenched. When trying to decide 

between two sentences one of which should be given up 

during contraction, the  less  epistemically  entrenched  of 

the two is chosen to be discarded. In our case, we are 

interested  in  viewing  revision   semantically  as  in  Grove’s 

account    of    system     of    spheres,
7    

which   is   taken  to 

represent the plausibility ordering over different worlds, and  

is  inter-translatable  with  epistemic  entrenchment.  The 

central sphere in this system, denoted [K], consists of the 

most plausible worlds, and represents the models of the 

current beliefs K. 

 
An agent may learn of a new piece of information in an 

environment  that  may  be  static  or  dynamic.  The revision 

operation will not suffice when modifying the belief set in 

the latter case.
8 

The required operation in such a scenario is 

called an update operation. It can be understood as follows. 

If a belief set K is to be modified by a sentence A, revision 

methods select from [A], the models of A, those that are 

closest to the set of models of K. In other words, given the 

plausibility ordering over all the worlds, every element of 

[A] that is closest to [K] is selected. On the other hand, while 

performing an update, for each element in [K], it is assumed 

that there is a system of spheres centred on it, and the 

closest element in [A] is selected with respect to each such 

ordering, and the union of all such models represents the 

updated belief set. 

 
The plausibility ordering can be defined by the presumed 

distance between different worlds. The way this distance is 

defined will affect the outcome of the resulting belief set 

after revision (or update). Revision and update are typically 

not   one-step   processes.   There   is   a   succession   of   these 

operations, and therefore it is vital that the same operation 

be applied during each iteration. In the system of spheres, 

each revised belief set is represented by a new system of 

spheres, which is in general different from the preceding 

one. Similarly for epistemic entrenchment, for every revised 

belief set a new epistemic entrenchment relations must be 

defined. In both cases, the number of spheres or epistemic 

entrenchment relations is exponential to the number of 

models. Distance measure uses only a polynomial number   

of distances in the number of models considered, and 

furthermore it is coherent because the  same 

revision/update      functions      are      used      during    each 

operation.
9,10
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To gauge the effectiveness of belief change using distance 

measures on the evolving model, we consider a  simple 

scenario, namely that of a diabetic patient who may either be  

alert  or  non-responsive  depending  on  her  blood  sugar- 

level. The agent starts with a preconceived model of the  

system and uses probing actions to elicit an output from the 

system. Available to us are two actions namely administer 

insulin and administer glucose that change the blood  sugar 

level of her system. The discrepancy between the prediction 

and observation, if any, is used to successively revise the 

agent’s model. By evaluating the  difference  in  the  

observation and expected output, the agent incrementally 

modifies its causal model of the system so that  after  a  

number  of  iterations  the  model becomes stable. 

 
Motivating example 

Let us assume that the blood sugar level of our diabetic 

patient can be low, normal or high, and the patient may be 

either alert or not alert. Accordingly, there are six possible 

states (worlds or models) denoted S1...S6 as listed in the 

table below. 

 
Table 1: States of the system 

 

 
Patient Status 

 
Blood  Sugar Level 

Low Normal High 

Alert S1 S2 S3 

Not Alert S4 S5 S6 

 
There is also an agent whose task it is to develop a causal 

model (represented by its knowledge of the system) as to 

how the blood sugar level of the patient is affected by 

different actions. However, we assume the agent does not 

have  access  to  any  glucose-measuring  device  and  hence 

cannot observe the patient’s blood sugar level directly. It  

can however observe whether the patient is alert or not 

alert. The two actions  that  the  agent  can  use  to 

experiment with the system  -  administer  insulin, which 

has the direct effect of lowering the patient’s blood sugar 

level (from high to normal, normal to low, and low to low), 

and administer glucose, which increases the blood sugar 

level (from low to normal, normal to high,  and  high  to 

high). It is important to note that there are two causal 

models. The causal model that really drives the patient’s 

sugar level is called the black box since it is assumed the 

agent does not have direct access to it. The causal model it 

has constructed represents the current knowledge of the 

agent; we call the white box since the agent has full access 

to this mechanism. We note that even though in this case 

the agent is experimenting directly on the patient, in 

practice  it  may  be  based  on  the  clinical  records  of  the 

patient’s response to such actions. 

 
It is also assumed that the black box is a deterministic  

system and there is a measurable distance between the 

different states of the black box. For the sake  of example,  

let Figure 1 represent the causal mechanism at work in  

terms of the real distance between the states of the black 

box. 

 
Figure 1: The black box representing the system under 

observation 

 
 
 

 

      

 
 
 
 

The distance between any two states is the sum of the 

segment lengths  on  the  shortest  path  between  those  

two states. For example, the  distance between  states S5 

and S3 is  8 + 4 + 2 = 14.  State S5 (highlighted) represents 

the  current  state  of  the  system  where  the  patient’s 

blood sugar level is normal but the  patient  is  not  alert. 

Now if the agent administers glucose to the patient, the 

immediate effect of this action is to increase the patient’s 

sugar level from normal to high. There are two states, S3  

and S6 in which the sugar level is high and of the two, the 

former is closer to the current state than the latter, and 

hence  the patient  will be in  state S3. 

 
Figure 2: The white box representing the agent’s 

knowledge 

 
 

The agent meanwhile does not have access to the causal 

mechanism of the black box. Its causal knowledge evolves 

based on the observable outcomes of different actions 

performed on the black box. Figure 2 represents the 

evolving causal model of the agent. Whereas the system is 

really in state S5 as shown in Figure 1, the  agent believes 

the  real  state is  either state S4  or  S6,  consistent  with its 
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observation that  the  patient  is  not  alert.  Nevertheless, 

the agent makes a prediction based on its current causal 

model. The agent has  administered  glucose  into  the 

patient and therefore the agent makes a prediction by 

reasoning as  follows: 

1. The  system is either in  state S4 or S6. 

a. Consider the first case, S4 (low sugar level, not 

alert). If the patient  is  administered  glucose, 

then it would move to one of states S2 and S5 

where the sugar level is normal.  Since  S5 is 

closer  than  S2  to S4,  the new  state will be S5. 

b. In the second case for S6, the new state will be 

the one in the set {S3, S6} that is closer to S6, 

namely itself. 

c. The  new  state will therefore be  either S5 or S6. 

2. In neither S5 nor S6 is the patient alert; so the agent 

predicts administering glucose will not result in any 

observable difference in the condition of the patient. 

Steps 1 and 2 comprise an update operation. Since the  

agent believes the patient is not alert which  contradicts 

with the observation of the patient as actually being alert, it 

must perform a revision operation by taking into 

consideration that the patient may be in one of the three 

states in the set {S1, S2, S3}. The revision process goes as 

follows: 

The agent believes the patient is in S5 or S6 and the 

observation requires that the system be either in one of 

the states in the set {S1, S2, S3}. 

a. From S5,  it  is closest  to  S2 with  a  distance of 1 . 

b. From S6 it is closest  to  S3 also  with  a  distance of 

1. 

c. Since there is no unique state with a minimum 

distance, both S2 and S3 are what the agent now 

believes to be potential current states of the real 

system. 

By thus iteratively performing an action on the patient, 

followed by an update and a revision operation, the agent 

tries to  rectify its  causal knowledge  of  the system. 

 
Implementation 

Since we are primarily interested in the use of distance 

measures by an agent to model this causal system, for 

preliminary investigation, we use the Dalal distance, which  

is the Hamming distance between worlds.11 The Hamming 

distance between two worlds (interpretations) is the 

number of propositional letters on which the two 

interpretations differ. We restrict ourselves to the use of 

propositional logic with a finite language. The distance 

between states in Figure 2 above is indeed calculated using 

the Dalal distance. For instance, the Dalal distance  between 

states S5 (normal, not alert) and S3 (high, alert) is 2 

because these states differ  in  two propositional 

variables. A snapshot of a part of our implementation in 

Java of the diabetes example is shown below in Figure 3. 

 
Figure 3: Snapshot of a part of the interface for the  

diabetes patient causal model application. The topmost 

figure shows the initial states of the black box (S5) and 

white box (S4, S6). The middle figure shows the transition 

states after administering glucose: (S3) and (S4, S6). The 

bottom-most diagram shows the transition states after the 

agent performs a revision operation 

 

 

Results 
Since the number of states and the number of actions is 

small, the white box stabilises after an average of five to six 

iterations of the learning process when the actions  are 

chosen randomly. In most instances, both the black box and 

white box arrive in one of states in {S1, S2, S3} where upon 

both models stabilise and under any action the transition 

states are identical. 

 
Stability need not necessarily mean that the agent now has 

both a complete and correct knowledge of the system. 

Instead, the black box could be as in the case above, stuck in 

a cycle. If we take the black box to be a directed graph with 

actions as the arcs, this means that there is no path from any 

state in {S1, S2, S3} to any state outside this set and by virtue 

of the distance measure the white box predicts the same 

outcome in these states. 

 
The agent’s choice of action may also give the  impression 

that  its  model  has stabilised. For  example,  if the  black box 
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is in S4 and the white box is in {S4, S5}, when the agent 

administers glucose the black box moves to S5 where the 

patient is not alert. The agent also updates its knowledge  

and believes that it is in either {S5, S6}. Furthermore, since 

the patient is not alert in either of {S5, S6}, revision will not 

result in any noticeable change. Administering insulin will 

result in both the black and white box moving to their  

former states and again revision has no effect. In such 

circumstances, alternating the actions results in repeatedly 

identical results giving the false notion of stability. It is also 

worth noting that whenever the agent and system are both 

in state S5, upon administering glucose the agent will always 

believe it is in S6 whereas the system will actually be in state 

S3 leading to a discrepancy between the prediction and 

observation. Under the current implementation,  this 

problem will never be resolved by the agent. 

 

Discussion 
Our experiment is only a preliminary investigation into the 

use of a rudimentary distance measure for building causal 

models, and the scenario we considered is simple. 

Nevertheless, it can be seen that distance measures  can 

help the agent to at least reduce the discrepancy between 

its predicted and the system’s actual outcome. 

 
Presently we are investigating other kinds of distance 

measure that can overcome the limitations of the Dalal 

distance. Furthermore, in our experiment, we only 

considered one observable variable namely whether the 

patient is alert or not alert. Presumably this limited ability to 

observe the system behaviour leads to get very quickly into 

a cycle in the process of modifying the causal model. We 

intend to study the effect of enhancing the agent’s ability to 

observe. 

 
Similarly,  we  would  also  have  to  consider  systems  with 

In   this   paper,   we   presented   a   distance   measure-based 

account of rectifying causal models. The Dalal distance was 

used primarily because it is very well studied in the 

literature, but we could employ other distance measures. 

One of the important avenues for future research is to 

investigate how one can not only choose the right distance 

measure, but also develop mechanisms that will allow the 

distance measure to be varied depending on the knowledge 

gained. An important question to ask is whether the 

distance measure should be changed just on account of the 

prediction being wrong, or whether more things should also 

be considered before changing it. 

 
A challenge in the example that we used above is the 

presence of hidden variables (blood sugar level). 

Traditionally such problems are addressed using Bayesian 

inference,   which   can   also   deal   with   non-deterministic 

actions. The example that we used is very similar to Markov 

localization  of  robot  in  dynamic  domains.
14  

It  would  be 

worthwhile to explore if adapting ideas from Bayesian 

inference and Bayesian causal models
15 

for a deterministic 

setting could be of use in our scenario. 

 
Conclusion 
We  presented  a  simple  non-probabilistic  causal  inference 

model of fluctuating blood sugar level in a diabetes patient 

using belief revision and update. An action performed by an 

agent who is trying to model the causal system is followed 

by an appropriate update of its knowledge. Comparison of 

the predicted behaviour of the system and the observed 

outcome leads to further rectification in the agent’s causal 

model. We assumed a fixed distance measure as the 

underlying mechanism for improving the model. This 

measure itself may need to be corrected; we will examine 

this issue in our future work. 

more  than  just  two  actions.  This  would  mean  that  it  is    

important for the agent to adopt policies that can help 

choose actions judiciously so it can arrive at a stable causal 

model in a shorter time. 

 

Hunter and Delgrande
12 

have proposed the use of action 

history trajectories to revise prior beliefs that are identified 

as the cause of the erroneous revised belief states given  

that the actions are infallible. An interesting avenue for 

future work would be to incorporate and exploit the 

advantages offered by their method. If the belief sets can be 

represented in Horn clause theories under the right  

integrity constraints, the choice between theories may be 

made using crucial literals to test and eliminate falsifiable 

theories.
13
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